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Abstract 

Holistic energy management system business practices, such as the framework detailed in ISO 
50001 – Energy management system, requirements and guidance for use, are centrally based 
upon the concept of energy performance improvement. For the purposes of ISO 50001, energy 
performance improvement can be determined for boundaries1 and following a process that is 
best suited for the implementing organization. Many organization and government ISO 50001 
based programs, including the United States Department of Energy Superior Energy 
Performance (SEP) program, find value in demonstrating organizational energy performance 
improvement as the difference in energy consumption between two time periods within 
physically defined facility-boundaries.  
 
To make the difference in energy consumption for the two time periods meaningful, the 
amount of energy consumed must be adjusted to account for relevant variables. Relevant 
variables, such as metrics of production and weather conditions, affect directly the amount of 
energy consumed but are independent of the facility’s energy performance. Therefore, it is 
crucial to adjust the observed energy consumption by the relevant variables identified by the 
facility, so that the energy savings resulted from the energy performance improvement actions 
can be isolated and determined, which is the purpose of this program. 
 
To tackle this adjustment issue, the SEP measurement and verification (M&V) protocol specifies 
four energy consumption adjustment modeling methods for use; forecast, backcast, standard 
conditions, and chaining. Application of a single set of energy consumption and relevant 
variable data from a manufacturing facility to the four different energy consumption 
adjustment modeling methods produces four different energy savings values. Variation in the 
energy savings values is the result of inevitable changes in operation and conditions between 
the baseline and reporting periods, which affects the evaluation results significantly. The lack of 
agreement in the calculated energy savings values, while all meeting the requirements of the 
SEP M&V Protocol, indicates that additional context and analysis is required to understand 
which modeling method, and subsequent result, best represents the actual energy 
performance improvement of an organization.  
 
This report describes how each adjustment model method can be implemented and provides 
guidelines of how to choose an appropriate adjustment method. A variety of statistical tests 
were made use to reveal which of the four methods best reflects the energy performance 
improvement of a given organization. In the study case of this paper, all of the four adjustment 
methods were applied. The resulting four savings estimates ranging from -1091.4 to 142,248.0 
MMBtu, and the four SEP Energy Performance Indicator (SEnPI) estimates ranging from 0.93 to 
1.00 lead to drastically different energy performance improvement conclusions. Discussion 

                                                      
1 Facility boundaries are required to be established for which energy performance improvement value can be 
evaluated. Facility boundaries are considered three-dimensional and unchanged during the evaluation, so that the 
energy accounting shall include energy that enter the facility boundaries from the sky and ground if consumed at 
the facility. 
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focused on why an organization should pick one of the four modeling methods over the others 
is carried out. An average energy saving estimator was proposed in order to provide a more 
appropriate estimate for the ESP. The interpretation of the 95% confidence intervals associated 
to ESP may provide more context to what calculated energy savings values mean and how they 
should be interpreted.  

1. Introduction 

ISO 50001 based energy management systems require the demonstration of improvements in 
energy performance. Organizations implementing the international standard are empowered to 
select the energy performance indicators (EnPI) and approach to determining energy 
performance improvement that are suitable to their energy consumption mode and valuable 
for their energy consumption performance management.. As a result, an organization may 
employ one or more EnPIs based on different hierarchy levels for its own energy management 
needs or for certification to ISO 50001. These EnPIs can encompass any range of physical 
boundaries and scope, from being focused on individual equipment and systems to the 
organizational boundaries and all energy use within.  
 
Many national energy efficiency programs based upon ISO 50001 specify a single EnPI that must 
be used when reporting energy performance improvement.  The pre-established EnPI is 
typically used to determine normalized energy savings for an entire facility, rather than for 
individual systems and equipment within the facility boundary. The use of a single pre-defined 
facility-wide normalized energy savings EnPI enables government programs to compare and 
aggregate energy savings resulting from ISO 50001 implementation, a useful exercise to 
understand the societal and economic impact of a national program. 
 
Many national ISO 50001 based programs specify the EnPI and process by which facility-wide 
energy savings are determined in a Measurement and Verification protocol. The United States 
Department of Energy (DOE) operates two nationwide ISO 50001 based energy efficiency 
programs, “50001 Ready,” and “Superior Energy Performance”. Both programs recognize 
organization for the implementation and continued use of an ISO 50001 energy management 
system, with SEP requiring third party certification to the international standard and 50001 
Ready requiring self-attestation that the major components of an energy management system 
based upon ISO 50001 have been met. Energy performance improvement for both programs 
must be demonstrated at the facility boundary level. SEP requires use of the “Superior Energy 
Performance Measurement & Verification Protocol,” (SEP M&V Protocol) which details the 
verifiable process by which facility-wide, normalized energy savings for an organization are 
determined utilizing a single EnPI. 
 
The SEP M&V Protocol allows for four methods by which organizations can normalize energy 
consumption to establish comparable time periods for use in calculating energy savings. These 
methods detail how to create energy consumption adjustment models normalize energy 
consumption for variations in values of relevant variables that affect the amount of energy 
consumed by an organization. Typical relevant variables used to develop energy consumption 



9  

adjustment models for industrial facilities include operating conditions including production 
level, operating hours and weather conditions.  
 
The four allowable energy consumption adjustment model methods deduce different energy 
savings values as they each specify the use of different time periods on which to build the 
adjustment model. Since the energy consumption adjustment model is a function of the 
relevant variables that affect energy consumption and their relationship to energy consumption 
values, the use of different time periods which contain different variation levels of these data 
points creates variations in the resulting model. These magnitude and spread of these values 
across a time period can be fairly different between the baseline period and the final evaluation 
period when consumption data are collected for evaluation use. 
 
The allowance of multiple methods creates flexibility, enabling organizations to more readily 
participate in the program. However, application of a common data set to the four allowable 
methods usually result in different energy savings values. This paradox of one set of data 
resulting in multiple allowable results can lead those seeking to report the most accurate 
energy savings value to ask which allowable method should be used. The SEP M&V Protocol 
does not provide guidance or requirements pertaining to how to know which of the four 
normalization methods to select when determining energy savings. This leaves the SEP program 
prone to facilities selecting a modeling method that leads to the most favorable result, even if 
that result is not the most accurate representation of the savings achieved.  
 
This report details and contextualizes the four energy consumption adjustment model methods 
allowed by the SEP M&V Protocol, demonstrates the variability of energy savings estimates that 
can occur when a single set of real industrial customer data is applied to each of the four 
methods, discusses why the methods generate different results, proposes that statistical tests 
can be employed in future works to guide model construction, and provides recommend to 
facilities which of the four methods should be used to determine energy savings based on 
relevant variable ranges and observation conditions. 

2. Background 

The determination of energy consumption is conducted with various purposes, such as to 
comply with legal standards, to meet sustainability requirements or to quantify potential 
energy savings. ISO 50001 – Energy management system standard – Requirement with guidance 
for use, is the internationally developed framework for an energy management system, a set of 
business practices used with the goal of improving energy performance improvement. The 
method for demonstrating energy performance improvement is left up to the organization 
implementing ISO 50001. The flexibility of ISO 50001 allows organizations to select energy 
performance indicators (EnPIs) that span different physical boundaries and scopes. Many 
organizations use some form of energy savings EnPI as their selected metric to demonstrate 
energy performance improvement and use either a standardized or custom approach to 
determining the energy savings value. 
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Government run ISO 50001-based programs have an interest in being able to compare and 
aggregate energy savings from participating facilities. To enable this, measurement and 
verification (M&V) protocols with EnPIs that represent the facility-wide energy savings are 
developed. The United States Department of Energy developed and maintains the Superior 
Energy Performance (SEP) M&V Protocol which requires use of such a facility-wide EnPI. The 
SEP M&V Protocol’s EnPI is determined on a facility-wide (sometimes known as a top-down) 
basis that includes four methods to normalize energy consumption data to make energy data 
for a baseline and reporting period comparable. The four normalization methods, forecast, 
backcast, standard conditions, and chaining, all adjust either the baseline, reporting, 
achievement, or both baseline and reporting periods energy data with regression models built 
around relevant variables, independent factors that affect the amount of energy consumed but 
are not a result of energy performance improvement actions, such as production level and the 
weather conditions.  
 
The EnPI required to quantify the energy performance improvement for the SEP program is the 
SEP Energy Performance Indicator (SEnPI). SEnPI is calculated as the facility-wide reporting 
period total primary energy consumption over the baseline period total primary energy 
consumption where the reporting (ECP(Σ)r), baseline (ECP(Σ)b), or both periods energy data 
are adjusted. 

 

Equation 1 𝐒𝐄𝐧𝐏𝐈 =
𝐄𝐂𝐏(𝚺)𝐫

𝐄𝐂𝐏(𝚺)𝐛
 

An SEnPI value less than 1 suggests that the facility’s energy performance is improved. The 
calculated SEnPI value is used to calculate energy performance improvement as a percentage 
value as = (1-SEnPI) x 100. 
 
However, oftentimes ECP(Σ)r and ECP(Σ)b are measured under different circumstance that 
they cannot be compared directly. This is a result in differences in relevant variables such as 
production and weather between the two periods. Relevant variables usually affect energy 
consumption in a significant way and if not reflected in the energy performance improvement 
calculation would lead to misinterpretation regarding the impact of energy performance 
improvement actions taken with the objective of improving the facility’s energy consumption 
performance. Therefore, an adjustment step is necessary to provide comparable energy 
consumption data to represent the facility’s consumption level under baseline operation basis 
and under reporting period operation basis. 
 
A regression adjustment model should be established that describes energy consumption as a 
function of relevant variables for each energy type included in the energy accounting. For 
industrial facilities that search for SEP certification, the energy consumption is usually 
considered in a linear relationship with the explanatory variable(s). 
 
In most of the cases, the range of values for a given relevant variable varies from the baseline 
period to the reporting period. Data periods with too little or too great of resulting data 
variability can result in adjustment models that do not well represent the energy related 
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performance across all time periods, and in some instances may result in the inability to create 
an allowable model for use to calculate energy savings that are allowable by some set of 
statistical tests outlined in an M&V Protocol. In the case of the SEP M&V Protocol, four 
different methods of model development are allowed to increase the likelihood that an 
allowable model can be constructed. Each method allowed by the SEP M&V Protocol dictates 
which data period (baseline, reporting, or an intermediate) should be used to create the energy 
adjustment model. 
 
Being able to determine which method and subsequent data period as the range of comparison 
for the energy performance determination is crucial to developing a model that best reflects 
the energy performance of an organization. In the SEP M&V Protocol, four methods for 
selecting which data period on which to construct an energy consumption adjustment model. 
Table 1 displays a summary of the SEP M&V Protocol allowable energy adjustment model 
methods and their corresponding data periods on which the model would be developed. 
 
Table 1 Summary of Adjustment Model Methods 

  Primary Methods Chaining Method 

  Forecast Backcast Standard 
Conditions 

Baseline to 
Intermedia
te Period 

Intermediate 
to Reporting 
Period 

En
er

gy
 C

o
n

su
m

p
ti

o
n

 Q
u

an
ti

ty
 

Reporting 
Period 

Observed 
(actual) 

Adjusted 
to 

baseline 
conditions 

Adjusted to 
standard 

conditions 

NA Observed 
(actual) 

ECP(Σ)r ECP(Σ)r
o ECP(Σ)r|b

a  ECP(Σ)r|s
a   ECP(Σ)r

o 

Intermediate 
Period 

NA NA NA Adjusted 
to baseline 
conditions 

Adjusted to 
reporting 

period 
conditions 

ECP(Σ)i ECP(Σ)i|b
a  ECP(Σ)i|r

a  

Baseline 
Period 

Adjusted to 
reporting 

period 
conditions 

Observed 
(actual) 

Adjusted to 
standard 

conditions 

Observed 
(actual) 

NA 

ECP(Σ)b ECP(Σ)b|r
a  ECP(Σ)b

o ECP(Σ)b|s
a  ECP(Σ)b

o 

SEnPI 
Equation 

 ECP(Σ)r
o

ECP(Σ)b|r
a  

ECP(Σ)r|b
a

ECP(Σ)b
o  

ECP(Σ)r|s
a

ECP(Σ)b|s
a  

ECP(Σ)i|b
a

ECP(Σ)b
o  x 

ECP(Σ)r
o

ECP(Σ)i|r
a  
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Figure 1 Forecast Model Framework 

The forecast model method uses baseline period energy consumption as training data to 
describe the facility’s energy consumption behavior during the baseline period. The obtained 
regression model is then applied to the reporting period relevant variable values to estimate 
the energy consumption that would have been expected at reporting period if the baseline 
operating systems and practices were carried into the reporting period. Energy performance 
improvement is calculated by comparing the model estimated energy consumption with the 
observed energy consumption at the reporting period.  
 
Figure 1 illustrates a case when a relevant variable with important variations between the 
baseline and the reporting periods is chosen, how the energy performance improvement is 
calculated with forecast model. The shaded area represents the estimated energy savings. 
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Figure 2 Backcast Model Framework 

 
The backcast model method uses reporting period energy consumption data as training data to 
describe the facility’s consumption behavior during the reporting period. The obtained 
regression model is then applied to the baseline relevant variable values to estimate the energy 
consumption that would have been expected at baseline period if the reporting period 
operating systems and practices were in place. By comparing the model estimated energy 
consumption with the observed energy consumption at the baseline period, the consumption 
performance improvement can be assessed. Figure 2 demonstrates how the backcast model 
estimates the energy performance and the energy savings based on the same data used for 
forecast model ( shown in Figure 1). The shaded area represents the estimated energy savings.  
 
The standard conditions model method is established with the basis of two regression models; 
a forecast model fitted with baseline period data, and a backcast model obtained relying on 
reporting period data. Standard conditions (relevant variable values) are applied to both 
regression models resulting in two sets of energy consumption estimtes that describes what 
level of energy consumption would have been expected for these standard conditions, one 
value describing if baseline period operating system and practices were in place and the other 
describing if reporting period operating system and practices were in place. A case of standard 
conditions model is shown in Figure 3, in which the same set of energy consumption data used 
in the forecast and backcast models (shown in Figure 1 and Figure 2 respectively). The 
estimated energy savings are consist of the two shaded areas which are the difference of 
energy consumption projections obtained with the forecast and the backcast models. 
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Figure 3 Standard Conditions Approach Framework 

 
The chaining model method is a composite of the forecast and backcast methods. The chaining 
method may be used if there is an intermediate period between the baseline period and the 
reporting period for which a model can be developed. In the case that the data were collected 
according to the SEP M&V protocol, this intermediate period must be at least one year long. 
The energy consumption model developed for the intermediate period is used to backcast to 
the baseline period, and to forecast to the reporting period to obtain the two sets of energy 
consumption estimates. The differences between the estimated consumption and the observed 
consumption data are the estimates of the energy consumption savings. 
 
Chaining is useful if one of the following is true: 

1) the reporting period conditions (relevant variable range) for energy consumption 
measurements are very different from the conditions of the baseline period model,  

2) the intermediate period between the baseline period and the reporting period is longer 
than 36 months, 

3) data availability or quality issues exist for either the baseline or reporting periods, 
4) a forecast or backcast adjustment model cannot be developed for either the reporting 

or baseline periods,  
5) the intermediate period relevant variable values are close to the future operating 

condition as compared to both the baseline and reporting periods. 
 
Figure 4 illustrates a toy example of how chaining model can be used to evaluate energy 
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performance when the relevant variable chosen has significant gaps between baseline period 
and reporting period. The estimation is performed on the same dataset used with forecast, 
backcast and standard conditions models. The sum of the two shaded areas located in the 
reporting period zone are the estimated energy savings. 
 

 
Figure 4 Chaining Model Framework 

 
The allowance of the four modeling methods in the SEP M&V Protocol allows for flexibility and 
greater program participation. The M&V Protocol lacks guidance on determining which method 
is considered most appropriate and should be chosen for facilities with versatile background 
and energy consumption data obtained under various conditions, while such liberty may 
introduce significant difference in the estimation of energy savings which may lead to 
drastically different conclusion regarding energy performance improvement. This caveat leaves 
the SEP program prone to facilities selecting a method that provides most favorable result, 
even if that result is not the most accurate representation of the savings achieved.  
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In this paper, the four methods are applied to the energy consumption and relevant variable 
data provided by a sample manufacturing facility in the United States. Estimation results from 
each method are presented and compared, and approach selection criteria are suggested. 

3. Methodology 

In this paper, a common set of energy consumption and relevant variable data from a 
manufacturing facility in the United States is applied to all the four energy consumption 
adjustment models allowed by the SEP M&V Protocol. The results are analyzed with a number 
of statistical tests elaborated to determine if the assumptions based on which the regression 
models are built are satisfied, and to evaluate how an organization can understand which of the 
four methods renders the greatest meaning for its specific set of data. 
 
The SEP M&V Protocol has gone through a number of revisions and the March 8, 2017 version 
is referenced in this study. There are no differences in the allowable four modeling methods 
between the March 2017 and any of the previously published versions of the SEP M&V 
Protocol. 
 
The data used in this report comes from a manufacturing facility that was certified to the SEP 
program. The facility voluntarily supplied data pertaining to its facility energy consumption and 
relevant variable data. The facility consumes both natural gas and electricity (all in MMBtu). 
Outside of an initial review of the data only electricity energy consumption is used throughout 
the report, since the electricity consumption analysis exercise is already fairly representative of 
the crucial model selection and result interpretation issues that commonly manifest in the data 
analysis for majority of facilities participating the SEP program and require a high degree of 
attention. As a result, the natural gas consumption analysis is not included to avoid the paper 
being too lengthy.  
 
Relevant variables include heating degree days (HDD) and a production metric which has been 
masked as “A”. All data were collected on a monthly basis across four years. The first year of 
data constitutes the baseline period with the next three years making up the achievement 
period. The final year of the achievement period is referred to as the reporting period. These 
time periods are specific to the SEP program. 
 
A discussion of the four modeling methods is followed by the application of confidence 
intervals and the development of an alternative energy savings metric based upon the standard 
conditions method and taking into account the full range of relevant variable data available. 

4. Results 

4.1. Statistically Identifying Valid Relevant Variables 

To build a reliable regression model, first we need to identify the reasonable independent 
variables that result in the outcome. Figure 5 provides plots of energy consumptions and 
related relevant variable data provided by the manufacturing facility spanning all data periods 
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(baseline, achievement, and reporting).  

 
Figure 5 Correlation between Energy Consumption (in MMBtu) and Independent Variables 

Evaluating for electricity, even a cursory visual analysis of Figure 5 reveals that relevant variable 
“A” is strongly correlated to the consumption of electricity. The Pearson’s product-moment 
correlation, also known as correlation coefficient, which is often employed as a measure of the 
strength of linear association between two variables with 0 indicating no association and ±1 
indicating the strongest positive or negative association, shows a value of 0.96, which 
mathematically confirms the assumption of a strong positive correlation between the 
dependent variable (Electricity) and the independent variable (“A”). The four energy 
consumption adjustment model methods will be used to construct electricity models with “A” 
as the relevant variable.  

4.2. Forecast Model 

4.2.1. Modeling Construction 

A forecast model using baseline period relevant variable and energy consumption data is 
constructed. 
 

Equation 2 𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 =  𝜷𝒐
𝑭 + 𝜷"𝑨"

𝑭 𝑿"𝑨"
𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 + 𝜺𝒊

𝑭
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𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  = electricity consumption observed during the baseline period, 
𝛽𝑜

𝐹  = forecast model intercept, 
𝛽"𝐴"

𝐹  = coefficient of the independent variable “A” in forecast model, 

𝑋"𝐴"
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  = baseline period observed value of variable “A”, 

𝜀𝑖
𝐹~𝑁(0, 𝜎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

2 ), 𝑖. 𝑖. 𝑑.: = forecast model error term. 
 
The fitted model can be described as follows: 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 =  𝟓𝟑𝟓𝟔𝟕. 𝟑𝟑 + 0.13 ∙ 𝑋"𝐴"
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 𝜀𝑖

𝐹, 
with 𝑅2 = 0.95. This means that the model explains 95% of the variability of the observations 
(data). A p-value of 7.12e-8 for F-statistic indicates that the linear relationship is statistically 
significant (7.12e-8 < 0.05), and the model fits the data significantly better than the mean2. 
 
To ensure the model developed is rigorous, the following statistical tests are conducted to 
verify whether: 

• The regression function is nonlinear 

• The error terms are not normally distributed 

• The error terms have non-constant variance 

• The error terms are not independent 

• There are outliers 
 
Table 2 Assumptions and Verification Tests for Linear Model 

Assumption Diagnostic Methods Consequence of Violation 

Linearity 
Plot of observed versus 
predicted values 

Errors in prediction, especially when 
extrapolating 

Normality of the error 
distribution of the 
residuals 

Normal quantile plot 
Bias in the determination of model 
coefficients and in the calculation of 
confidence intervals for forecasts 

Homoscedasticity 
Plot of residuals versus 
predicted values 

Hard to evaluate the standard 
errors of the coefficients which will 
result in bias in estimated 
confidence intervals 

Collinearity and 
independence of the 
errors 

Plots of residuals for all 
observations; Variance 
inflation factor; Durbin-
Watson statistic 

If errors tend to always have the 
same sign, the model systematically 
under-predicts or over-predicts 
under particular configuration. 

No outliers 
Plots of Cook’s distance and 
Studentized residuals 

Outliers may be due to random 
variation or indicate areas that the 
linear model is not a good fit. 

 

                                                      
2 A constant model y= average of all observed values. 
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Cook’s distance is a common influence measure tool to identify influential data points (see 
Figure 6), which can potentially be outliers. An influential data point is defined as if removed 
from the data would significantly change the fit. It can be either an outlier or a point having 
large leverage3 which implies that the independent variable of a point is far from those of other 
observations. 

 
Figure 6 Cook's Distance of Observations of Reporting Period Based on the Forecast Model 

The outlier test of Studentized residual indicated that no outliers were detected with a 
significant p-value of 0.05. The point with largest Studentized residual is point 12. 
 
Figure 7 identifies that both point 11 and point 12 are observations made with extremely low 
variable “A”. This may explain why they were considered as having important influence on the 
fitted line’s slope. However, since their Studentized residuals are all in reasonable range (<3), 4 
these points are not deemed as outliers and thus can be included in the model construction.  
 
In the case that there are potential outliers identified by the test, further investigation is 
required to identify the nature of the outliers. If the outlier is due to a measurement error, 
which is related to the personnel involved or tool used, and can be confirmed that it is 

                                                      
3 The average of leverage is (number of independent variables +1)/number of observations. A large leverage can be 
2 or 3 times of this value. 
4When taking a standard normal distribution, only 5% of standardized residuals are outside +-1.96. A standardized 
residual outside +-3, which corresponds to only 0.28% of all the standardized residuals is conventionally 
considered as an outlier, which means that the chance that such a point belongs to the group of other points is less 
than 0.28%. 
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mistaken, then the point can be removed from the analysis. However, the removal should be 
reported and justified in the documentation, and a sensitivity analysis should be performed 
(with and without the removal point).  
 
 

 
Figure 7 Forecast Model with Fitted Points and Baseline Period Observations  

To check the normality of the error distribution, a histogram can be employed to illustrate the 
distribution of the residuals and to verify if the obtained residuals are symmetric and centered 
on zero, as shown in Figure 8. The estimated density is similar to a normal density distribution, 
therefore, the normality of the residuals can be assumed. 
 
Q-Q plot is used to evaluate the normal assumption of the residuals. It compares the observed 
residual distribution to theoretical one by plotting their quantile against each other. 
 
Figure 9 suggests that the error terms can generally be considered as normally distributed. 
Note that due to the limited size of the data points used to fit the model, the obtained results 
are contextual. If more data were collected, the conclusion could have been more reliable. 
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Figure 8 Histogram of the Residuals of the Forecast Model 

 

 
Figure 9 Quantiles Plot of Forecast Model 
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Another easier way to verify all the statistical constrains required by the linear model is to use 
the gvlma tool (package in R) to perform a global test of the linear model assumption, including 
assumptions on skewness and kurtosis of the residual distribution, link function (linear model 
statistically significant) and heteroscedasticity (the variance of the residuals is dependent on 
the independent variable – “A” in this case). 
 
Table 3 Output of the gvlma tool (package in R) on the forecast model lm(Electricity ~ A) 

ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS 
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM: 
Level of Significance =  0.05  
 
                     Value p-value                Decision 
Global Stat        1.84877  0.7635 Assumptions acceptable. 
Skewness           0.27453  0.6003 Assumptions acceptable. 
Kurtosis           0.61915  0.4314 Assumptions acceptable. 
Link Function      0.09512  0.7578 Assumptions acceptable. 
Heteroscedasticity 0.85997  0.3537 Assumptions acceptable. 

 
The results from the global test (gvlma) confirm that the linear model assumptions are all 
satisfied. We may use linear model to measure the reporting period electricity consumption 
based on the independent relevant variable (“A”). 
 

4.2.2. Modeling Prediction 

 
Figure 10 Reporting Period Energy Consumption Prediction of Forecast Model  



23  

Figure 10 illustrates the prediction results of the reporting period energy consumption from the 
established forecast model with 95% confidence interval. 
 
Once the prediction is conducted for the reporting period, we could compare the predicted 
values with the observed reporting period electricity consumption. The predicted values in the 
reporting period are extrapolations, which imply that if the facility did not take actions to 
improve their energy performance, their energy consumption during the reporting period 
would have been the values predicted. Comparing the predicted values and the observations 
made in the reporting period may indicate whether the energy performance improvement of 
the facility is statistically significant.  Given the fact that the sample size is relatively small, a 
Student’s t-test is performed to examine whether the prediction mean and the observation 
mean are equal to each other (null hypothesis).  
 
We obtain a p-value of 0.28, which is larger than the cutoff 0.05 (with 95% confidence level) 
indicating that there is weak evidence against the null hypothesis. Therefore, we cannot reject 
the null hypothesis in favor of the alternative hypothesis and could conclude that the predicted 
mean and the observed mean are not significantly different. The energy consumption 
performance of the facility during the baseline period and during the reporting period is not 
significantly different.  
 
The above workflow demonstrates how to use a forecast model to evaluate and to quantify 
energy performance improvement for a given facility. 

4.3. Backcast Model 

4.3.1. Modeling Construction 

A backcast model using the reporting period as the training data to fit our model and to predict 
the electricity consumption during the baseline period is constructed. 
 

Equation 3 𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚𝒓𝒆𝒑𝒐𝒓𝒕𝒊𝒏𝒈 =  𝜷𝒐
𝑩 + 𝜷"𝑨"

𝑩 𝑿"𝑨"
𝒓𝒆𝒑𝒐𝒓𝒕𝒊𝒏𝒈

+ 𝜺𝒊
𝑩

 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 = electricity consumption observed during the reporting period, 

𝛽𝑜
𝐵  = backcast model interception, 

𝛽"𝐴"
𝐵  = coefficient of the independent variable “A” in backcast model, 

𝑋"𝐴"
𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔

 = reporting period observed value of variable “A”, 

𝜀𝑖
𝐵~𝑁(0, 𝜎𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔

2 ), 𝑖. 𝑖. 𝑑.: = backcast model error term. 

 
The fitted model is: 

𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚𝒓𝒆𝒑𝒐𝒓𝒕𝒊𝒏𝒈 =  𝟔𝟗𝟏𝟕. 𝟗𝟕 + 0.11 ∙ 𝑿"𝑨"
𝒓𝒆𝒑𝒐𝒓𝒕𝒊𝒏𝒈

+ 𝜺𝒊
𝑩, 

with 𝑅2 = 0.82. This indicates that the model explains 82% of the variability of the observations 
(data). A p-value of 5.69e-5 for F-statistic implies that the linear relationship is statistically 
significant (5.69e-5 < 0.05), and the model fits the data significantly better than the mean. 
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Both outlier test and influence plot were carried out to identify potential outliers. To be 
qualified as an outlier, an observation point usually has important residual (unusual value of the 
dependent variable Y based on its independent variable X). Only in the case that an outlier has 
high leverage, which is measured by hat-value, will it influence strongly the regression’s slope 
and intercept. In such case, the observation point must have an unusual X-value and an unusual 
Y-value given its X-value. 

 
 
Figure 11 Influence Plot of Residuals of Backcast Model 

Each point in Figure 11 represents an individual data observation. Although point 42 was 
evaluated as having larger influence than point 41 based on the influence plot in Figure 11, the 
Studentized residual test states that point 41 has the largest residual. No points were identified 
as an outlier since no Studentized residual is smaller than 3. 
 
Figure 12 implies that point 42 was identified as an influential point because of its location. In 
any cases, measuring conditions are required to be verified in order to exclude any data points 
from the analysis. 
 
The global assumption test confirms that all the linear model assumptions are all satisfied. We 
may use linear model to measure the reporting period electricity consumption based on the 
independent variable “A”. 
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Figure 12 Backcast Model with Fitted Points and Reporting Period Observations  

 
4.3.2. Model Prediction 

Figure 13 illustrates the prediction results from the established backcast model with 95% 
confidence interval. Note that comparing to the forecast model in Figure 10, the backcast 
model is fitted with data with less variability. In other words, the relevant variable “A” covers a 
narrower range of values in the reporting period than in the baseline period. As a result, the 
backcast model’s predictive capability is more limited than the forecast model, as shown in 
Figure 13, the estimated confidence interval covers a larger range in the backcast model.  
 
In some cases, the consumption behaviors during the two evaluation periods may not be 
comparable due to the important difference between the relevant variable. In the event that 
the difference is larger than 3 times of the standard deviation, the predictive capacity would 
reach its limit and a Chaining model would be a better fit to perform the data normalization as 
well as the saving estimation. The application of Chaining model to the sample data is laid out 
in Section 4.5. 
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Figure 13 Baseline Period Energy Consumption Prediction of Backcast Model  

As in the previous section, the projected consumption data can be compared to the observed 

baseline electricity consumption with a t-test to identify if the electricity consumption 

performances are statistically significantly different before and after the improvement actions. 
 

The obtained p-value is 0.99 which suggests that we cannot reject the null hypothesis in favor 
of the alternative hypothesis and could conclude that the predicted mean and the observed 
mean are not significantly different. This conclusion matches the conclusion obtained from the 
forecast model analysis that the energy performances during the baseline period and the 
reporting period are not statistically significantly different (two consumption data sets may 
belong to the same population). 

4.4. Standard Condition Approach 

From the previous analysis, it is clear that the relevant variable (“A”) range varies between the 
baseline and reporting periods. To enable the energy performance assessment based on a 
standardized level of values for the relevant variable “A”, the forecast model (Equation 2) and 
backcast model (Equation 3) can combined to predict the energy consumption under the 
performances from baseline period and from reporting period respectively.  
 
As shown in Figure 14, the achievement period, which is a period between the baseline period 
and the reporting period during which the energy performance improvement actions were 
taken, has data encompassing both low and high relevant variable “A” values and lasted for 2 
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years in this study case (24 data points). The wide spread of relevant variable makes this period 
well suited to represent the “standard conditions” of the facility. The previously constructed 
forecast and backcast models are used to predict the electricity consumption during the 
achievement period. 
 

 
Figure 14 Electricity Consumption Observation from Baseline, Achievement and Reporting Periods  

4.4.1. Model Prediction 

Figure 15Error! Reference source not found. illustrates the prediction results from both the 
forecast and the backcast models based on achievement period production level with 95% 
confidence interval. Due to the lack of training data at low value range of relevant variable “A”, 
the backcast model showed important uncertainty for low value range of “A”, for it was 
established based on reporting period observations consisting only high value range of “A”. 
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Figure 15 Achievement Period Energy Consumption Prediction of Standard Condition Approach with 95% Confidence Interval  

A t-test is conducted to identify if the predicted consumption series during the achievement 
period by forecast model (orange points) and by backcast model (green points) are statistically 
significantly different in Figure 15. The obtained p-value 0.66 confirms the conclusion drawn 
from the previous t-tests that the energy consumption performances during the baseline and 
the reporting periods are not significantly different. 

4.5. Chaining Model 

4.5.1. Model Construction 

Another way to evaluate the energy performance of baseline period and reporting period 
observations measured under different conditions via an intermediate period is the chaining 
model. A regression model is built based on observations made during an intermediate period, 
achievement period, which is between the baseline period and the reporting period. Lasting 
often longer than a year, the achievement period is usually capable of providing more training 
data points and covers larger range of relevant variables than the baseline or the reporting 
periods. This allows the chaining model to have broader applications. 
 

Equation 4 𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚𝒂𝒄𝒉𝒊𝒆𝒗𝒆𝒎𝒆𝒏𝒕 =  𝜷𝒐
𝑪 + 𝜷"𝑨"

𝑪 𝑿"𝑨"
𝒂𝒄𝒉𝒊𝒆𝒗𝒆𝒎𝒆𝒏𝒕 + 𝜺𝒊

𝑪
 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡  = electricity consumption observed during the achievement 
period, 



29  

𝛽𝑜
𝐶  = chaining model interception, 

𝛽"𝐴"
𝐶  = coefficient of the independent variable “A”, 

𝑋"𝐴"
𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡  = achievement period observed value of variable “A”, 

𝜀𝑖
𝐶~𝑁(0, 𝜎𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑚𝑒𝑛𝑡

2 ), 𝑖. 𝑖. 𝑑.: = chaining model error term. 
 
The fitted model is: 

𝑬𝒍𝒆𝒄𝒕𝒓𝒊𝒄𝒊𝒕𝒚𝒂𝒄𝒉𝒊𝒆𝒗𝒆𝒎𝒆𝒏𝒕 =  4211.16 + 0.14 ∙ 𝑿"𝑨"
𝒂𝒄𝒉𝒊𝒆𝒗𝒆𝒎𝒆𝒏𝒕 + 𝜺𝒊

𝑪, 
with 𝑅2 = 0.89. This indicates that the model explains 82% of the variability of the observations 
(data). A p-value of 2.26e-12 for F-statistic implies that the linear relationship is statistically 
significant (2.26e-12 < 0.05), and the model fits the data significantly better than the mean. 
 
Based on the outlier test conducted and the influence plot, no data points can be regarded as 
outliers. The global assumption test performed indicates that the linear model assumptions are 
all satisfied. We may use the linear model to measure the achievement period electricity 
consumption based on the independent variable “A”. 
 

4.5.2. Model Prediction 

Figure 16 illustrates the predicted energy consumptions at both baseline and reporting periods 
based on the established chaining model with a 95% confidence interval.  
 
 

 
Figure 16 Baseline and Reporting Periods Energy Consumption Prediction of Chaining Model  
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With the predicted values for the baseline period and reporting period, a comparison of the 
predicted values with the observed electricity consumption can be made. Here we compare not 
only the chaining model predictions with the observations made during the baseline period, but 
also the chaining model predictions with the observations made during the reporting period 
with the “A” observed during the two periods of time accordingly. Two t-tests were conducted, 
and a p-value of 0.74 is obtained for baseline period observations and of 0.51 for reporting 
period observations, which indicate that the predicted energy consumptions and the observed 
ones are not statistically significantly different for both baseline period and reporting period. 
There is therefore no evidence that the facility’s energy consumption performance is 
statistically significantly different between the baseline period and the achievement period, or 
between the achievement period and the reporting period.  

5. Discussion 

5.6. Model Comparison and Model Selection 

5.6.1. Comparison of Energy Performance Improvement Percentage 

Based on the four adjustment methods proposed by the SEP M&V Protocol, the SEP Energy 
Performance Indicator (SEnPI) and the Energy Performance Improvement (EPI) percentage can 
be calculated. Table 4 provides an overview of the four approaches used for the energy 
performance improvement evaluation as well as the obtained results which turned out to be 
very different among the four models.  
 
Table 4 Energy Performance Indicator and Energy Performance Improvement Percentage Estimates Obtained by the Four 
Adjustment Model Methods 

Method 
Regression model 
built with data 
from 

Coefficient  
of “A”: 𝛽"𝐴" 

Intercept: 
𝛽0 

𝑅2 
t-test 
p-value 

SEnPI EPI (%) 
ESPTD  
(MMBtu) 

Forecast Baseline period 0.13 53567.33 0.95 0.28 0.96 4.14% 106,412.7 

Backcast Reporting period 0.11 6917.97 0.82 0.99 1.00 -0.06% -1091.4 

Standard 
Conditions 

Baseline period + 
Reporting period 

forecast + 
backcast 

forecast + 
backcast 

- 0.66 0.98 2.19% 47,892.1 

Chaining 
Achievement 
period 

0.14 4211.16 0.89 
0.74, 
0.51 

0.93 6.58% 142,248.0 
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Figure 17 Adjustment Model Prediction Results Comparison 

 
The evaluation results in Table 4 vary drastically according to the method employed. The 
primary issue that led to the differences in results is that the facility’s production patterns 
changed from the baseline period to the reporting period (indicated by “A”). This is directly 
linked to the important change in the facility’s energy consumption behavior between the two 
periods of time.  
 
In fact, the baseline period production level is relatively low (low value range of “A”) during the 
12 months and contains no information indicating the facility’s energy consumption behavior 
with high production level. Therefore, the forecast model built based on baseline period data is 
not able to predict accurately the facility’s energy consumption during the reporting period, 
which corresponds to higher production level (see important uncertainty around the predicted 
reporting period consumption in Figure 10).  
 
In similar ways, when building the backcast model, all the learning data are based on high 
production pattern (high values of “A” observed during the reporting period) and cover a 
narrow range of values for the relevant variable “A”, which makes the model hard to predict 
the consumption behavior at baseline period with low production pattern (see large confidence 
interval in Figure 13). In the contrary, the intermediate period has two years of observations (24 
points) which encompasses a large range of values of the relevant variable “A”. In this case, it is 
more appropriate to adopt the standard condition model to perform the energy performance 
evaluation, which employs the fitting and the extrapolation of both the forecast model and the 
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backcast model (see Figure 15) to obtain estimated energy consumption during the 
achievement period. 
 
The chaining model is the only model that takes other data than those from the baseline and 
reporting periods into account in the performance evaluation. Only the achievement period’s 
observations were used to establish the regression model. There are several points of low 
production (achievement period points 1, 2, 4 in Figure 17) that have a large influence on the 
fitting of the chaining model’s slope and intercept (red line), which make the model yield more 
savings than the forecast and backcast models when comparing the baseline electricity 
consumption to the reporting period electricity consumption. The supplemental data provided 
by the intermediate period can represent neither the baseline period performance nor the 
reporting period performance. The difference in the intercept estimates (𝛽0) leads to biased 
comparison result which makes the chaining model score the best improvement evaluation 
(EPI) among all the methods considered in this study case. This approach is thus more 
appropriate to use when some changes irrelevant to the facility’s energy performance occur 
(such as moving from one site to another, which is known as “static factors”) during the 
achievement period that have a substantial impact on the energy consumption. In this case, the 
baseline observations and reporting period observations are not comparable and difficult to 
adjust (with non-routine adjustments). For example, the fact of moving from one site to 
another may help to reduce energy consumption, however the effect is confounded with the 
other actions taken to improve the energy performance and hard to be isolated. This is why an 
intermediate model is sometimes required to complete the evaluation. 
 
As the average value of relevant variable “A” is higher during the reporting period, and the 
energy consumption has positive correlation with the value of “A”, the forecast model 
estimating the energy consumptions at high level of “A” led to higher energy savings estimation 
than that obtained by the backcast model estimating the energy consumptions at low level of 
“A”.  
 
The most appropriate method should not be chosen based on the evaluation results, but on 
how the facility evaluates its future relevant variable level. If the future relevant variable level 
(range of “A”) is closer to the reporting period, then the forecast method makes more sense. 
Likely, if the future level of “A” shares more similarity to the baseline period, then the backcast 
method is recommended. In the case that the facility has no clear idea of how the future level 
of “A” would be, the standard condition model would appear to be the most appropriate 
method, for it covers both low and high values of “A” and using no achievement period’s 
consumption data to evaluate the energy performance improvement which could be confusing 
sometimes. 
 
For facilities encountered similar situation as the study case, as the energy consumption range 
is changed from baseline period to reporting period due to the variation of the relevant 
variable(s), the adjustment method should be chosen with precautions since it can easily 
introduce bias in the energy performance evaluation which may lead to inappropriate 
conclusions. 
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Table 5 summarizes the interpretation of the energy performance evaluation results obtained 
by the four adjustment models. Guidance on how to choose the most appropriate adjustment 
model according to the available data and measurement conditions is also provided. 
 
Table 5 Adjustment Models and Recommended Conditions to Use for Energy Performance Evaluation 

Adjustment 
Model 

Interpretation Recommended Conditions to Apply 

Forecast 

Energy saved by the 
improvement actions 
during the reporting 
period 
(reporting period 
savings). 

• If baseline period energy performance model can be 
extrapolated. 

• If reporting period measuring conditions (e.g. 
production level, weather conditions) are desired 
as the evaluation basis. 

• Usually used as the default method. 

Backcast 

Energy that could 
have been saved with 
the improvement 
actions during the 
baseline period 
(lost saving 
opportunity). 

• If inappropriate operation schedule or habits were 
observed in baseline period that logical correlation 
between relevant variables and energy performance 
indicator cannot be established.  

• If reporting period energy performance model can 
be extrapolated. 

• If baseline period measuring conditions (e.g. 
production level) are desired as the evaluation basis. 

Standard 
Conditions 

Energy that could be 
saved by the 
improvement actions 
if the production 
activity is under the 
standard conditions. 

• If important changes occur in relevant variable(s). 

• If some specific measuring conditions are considered 
more appropriate for the energy performance 
evaluation such as closer to the future operating 
conditions.  

Chaining 

Energy that could be 
saved by the 
improvement actions 
if no energy 
performance-
unrelated changes 
have occurred that 
influence the facility’s 
energy consumption. 

• If reporting period and baseline period measuring 
conditions are changed (such as site change) that 
cannot be filtered by the adjustment model.  

• If the consumption behaviors during the two 
evaluation periods are not comparable due to the 
important difference between the relevant variable 
range (low value range vs high value range, with 
difference larger than 3 times of the standard 
deviation). 

• If non-representative consumption data were 
collected (a few identified outliers) that affect the 
energy performance evaluation. 

• If intermediate period data cover both low and high 
value range of relevant variables, chaining allows 
broader applications. Performance during 
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intermediate period will affect evaluation results. 

• Generally, performance of later years (closer to 
reporting period) reflects better the results of saving 
actions. 

5.7. New Energy Savings Indicator 

Even if the relevant variable’s influence on energy performance improvement could be isolated 
completely through modeling, the values on which a standard conditions model should be built 
for the performance evaluation depend on the facility’s predictable future or average relevant 
variable values. If the energy consumption is positively correlated to the relevant variable, the 
use of high relevant variable value range would result in higher energy savings and a smaller 
SEnPI. To avoid the confusion and the bias introduced by the adjustment model, we propose an 
alternative indicator that could adjust the evaluation of energy performance and is 
independent of the relevant variable level, such as: 
 

Equation 5 𝐄𝐒𝐏̂ =
𝟏

𝟐
(𝐄𝐂𝐏(𝚺)𝐫

𝐨+𝐄𝐂𝐏(𝚺)𝐫|𝐛
𝐚 − 𝐄𝐂𝐏(𝚺)𝐛|𝐫

𝐚 − 𝐄𝐂𝐏(𝚺)𝐛
𝐨) 

Table 6 Top-Down Energy Saving Estimates Comparison 

Method ESPTD (MMBtu) 

Forecast 106,412.7 

Backcast -1091.4 

Standard Conditions 47,892.1 

Chaining 142,248.0 

Proposed ESP̂ 52,660.6 

 
Table 6 lists the energy saving estimates resulted from all the four adjustment methods as well 

as the suggested estimator. The proposed estimator ESP̂ provides closer estimate to the 
standard conditions results. In the case that the standard conditions are hard to define, this 
estimator could provide an estimated saving value that appears to be more representative than 
the ones provided by forecast or backcast models alone. 

5.8. Energy Performance Indicator with Confidence Interval 

Applying a confidence interval to the energy savings value is usually helpful to understand the 
possible range of the energy performance improvement value obtainable based on the limited 
available data. The 95% confidence interval can be interpreted as that for a given SEnPI value, 
95% of the time the true mean SEnPI will be between the lower and upper values seen in Table 
7, which provides the estimated 95% confidence range for each energy performance 
improvement estimate resulting from the application of the four methods. 
 
Table 7 shows that most of the confidence intervals are relatively large which coincides with 
the conclusion of the z-tests performed for each model: the energy performance in the baseline 
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period and in the reporting period is not statistically significantly different. 
 
Table 7 Energy Performance Indicator, Energy Performance Improvement Percentage and Top-Down Energy Saving Estimates 
Obtained by the Four Adjustment Models with 95% Confidence Interval 

Method SEnPI EPI (%) ESPTD (MMBtu) 

Forecast 
0.959 
[0.909; 1.014] 

4.144 
[-1.436; 9.143] 

106,412.7 
[-348,55.1; 247,680.6] 

Backcast 
1.001 
[0.885; 1.116] 

-0.059 
[-11.649; 11.531] 

-1091.4 
[-217,039.0; 214,856.1] 

Standard Conditions 
0.978 
[0.869; 1.099] 

2.193 
[-9.905; 13.103] 

47,892.1 
[-205,183.1; 300,967.3] 

Chaining 
0.934 
[0.851; 1.023] 

6.584 
[-2.322; 14.863] 

142,248.0 
[-48,963.0; 333,459.0] 

6. Conclusion 

The Superior Energy Performance (SEP) Measurement and Verification (M&V) Protocol provides 
requirements for determining facility-wide energy performance improvement in support of the 
ISO 50001 based SEP program. The SEP M&V Protocol instructs users to adjust energy 
consumption data in either a baseline, reporting, or intermediate period to account for 
variations in relevant variables, which affect energy consumption at an organization but they 
themselves are independent of implemented energy performance improvement actions. The 
SEP M&V Protocol specifies four energy consumption adjustment modeling methods for use; 
forecast, backcast, standard conditions, and chaining. 
 
Application of a single set of energy consumption and relevant variable data from a 
manufacturing facility to the four different energy consumption adjustment modeling methods 
produced four different energy savings estimates that range from -1091.4 to 142,248.0 MMBtu, 
and four SEP Energy Performance Indicator (SEnPI) estimates ranging from 0.93 to 1.00, which 
led to different energy performance improvement conclusions. Variation in the energy savings 
estimates is the result of inevitable changes in operation and conditions between the baseline 
and reporting periods, which affect the evaluation results significantly. The lack of agreement in 
the obtained energy savings values, while all meeting the requirements of the SEP M&V 
Protocol, indicates that additional context and analysis is needed to understand which 
modeling method, and subsequent result, best represents the actual energy performance 
improvement of an organization.  
 
A variety of statistical tests are applied to the data and energy savings results to reveal which of 
the four methods best describes and reflects the facility’s energy consumption evolution and 
whether the obtained energy performance improvement percentages make sense based on the 
facility’s operation patterns. 
 
Ultimately, the selected method should include a modeling period that encompasses relevant 
variable values that are close to expected future levels, so that the evaluation results are more 
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meaningful and indicative of the facility’s future energy savings. In the absence of such 
knowledge of future relevant variable levels while important variation of the relevant variable is 
observed during the baseline and reporting periods, the standard conditions approach is well 
adapted to determine meaningful energy savings values as the method may be set up with a 
vast range of relevant variable values reflected in both the baseline and reporting periods.  
 
Lastly, an alternative average energy saving estimator is proposed which allows to adjust the 
evaluation of energy performance and is independent of the relevant variable level. The 
interpretation of 95% confidence interval reveals more context to what calculated energy 
savings values mean and the level of reliability with which the estimated mean value should be 
interpreted.  
 
Future work will include expansion of this analysis to include data from additional facilities to 
validate that the challenges presented in this report are universal. With additional analysis, a 
methodology by which to select the appropriate modeling method after original data have 
been collected will be developed and proposed. 
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8. Nomenclature 

E(*) Quantity of energy of an unspecified type 
ECP(*) Primary energy consumption of an unspecified energy type 
ECP(Σ) Primary energy consumption of all energy types 
ECP(Σ)b

o Observed (actual) baseline period energy consumption 

ECP(Σ)r
o Observed (actual) reporting period energy consumption of all energy types 

ECP(Σ)b|r
a  Modeled baseline period primary energy consumption adjusted to reporting 

period conditions 
ECP(Σ)r|b

a  Modeled reporting period primary energy consumption adjusted to baseline 
period conditions 

ECP(Σ)b|s
a  Modeled baseline period primary energy consumption adjusted to standard 

conditions 
ECP(Σ)r|s

a  Modeled reporting period primary energy consumption adjusted to standard 
conditions 

ECP(Σ)i Intermediate period total primary energy consumption 
ECP(Σ)b|i

a  Modeled baseline period primary energy consumption adjusted to intermediate 
period conditions 

ECP(Σ)i|r
a  Modeled intermediate period primary energy consumption adjusted to reporting 

period conditions 
ESP(*) Primary energy savings of an unspecified energy type 
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